
CHAPTER -7
PYTHON LIST MANIPULATION

Bimlendu Kumar

PGT Computer Sc.

Kendriya Vidyalaya Garhara

INTRODUCTION

• Python Lists are containers that are used to store a list of values
of any type.

• Python List are mutable i.e. we can change the elements of a list
in place.

• Python do not create another list when a change is made in list in
place.

We are going to discuss
1. Creating a list and accessing a list
2. Various operations on list
3. List manipulation with some built-in function.

CREATING AND ACCESSING LISTS
Points to Remember
1. A list is a standard data type of Python that can store a sequence of values

belonging to any type.
2. The lists are depicted through square bracket.
3. Lists are mutable that is value of list can be changed in place.
4. List can contain values of mixed data types.
5. Lists are formed by placing a comma seperated list of expressions in square

brackets.
blanklist = [] #Empty List
intlist=[1,2,3,4,5] #list of integers
realist=[1.2, 2.5, 7.3, 8.9, 6.6] #list of real numbers
characterlist= [‘a’,’b’,’c’] #list of characters
fruitlist=[“mango”, “apple”, “grapes”] #list of strings
recordlist=[1, 59.90, ,’m’, “Sandeep”, “cs”] #List of mixed data types

THE EMPTY LIST

The Empty List: A list that does not have any element.
The empty list is [].
It is the list equivalent to ‘0’ or ‘’ and its also have truth value false.
>>>Emptylist1=[]
It can also be created as
>>Emptylist1=list()
>>>Emptylist1
[]
>>>Emptylist5
[]

LONG LIST AND NESTED LIST

Long List: A list containing many values.

>>>Emptylist1=[0, 1, 4, 9, 16, 25, 36, 49, 64, 81,
100, 121, 144, 169, 196, 225, 256, 289, 324,
361, 400, 441, 484, 529, 576, 625]

Nested Lists: A list containing some list as its value

>>>nestedlist=[2,4,6,[1,3,5],8,10]

LIST FROM TUPLE

creation of list from tuple

>>>tuple1=('W','E','L','C','O','M','E‘)
>>> List2=list(tuple1)
>>> List2
output
['W', 'E', 'L', 'C', 'O', 'M', 'E']

LIST CREATING FROM INPUT TAKEN BY USER

creation of list from keyboard input

>>> List3=list(input("Enter List Elements:- "))

Enter List Elements:- 123456789
>>> List3

['1', '2', '3', '4', '5', '6', '7', '8', '9']

LIST CREATING FROM INPUT TAKEN BY USER

creation of list from keyboard input

>>> List3=list(input("Enter List Elements:- "))
Enter List Elements:- 123456789
>>> List3
Output
['1', '2', '3', '4', '5', '6', '7', '8', '9']
Though we have typed digits but it is taken as string

>>> List4=eval(input("Enter 5 integers as elements of list :- "))
Enter 5 integers as elements of list :- 10,20,30,40,50
>>> List4
Output
(10, 20, 30, 40, 50)

ACCESSING LISTS

Lists are mutable sequences having a progression of elements. So, there must
be a way to access its individual element. But before moving to this, let us
discuss its smililarities with string.
1. Lists are sequences just like strings. They also index their individual

elemens just like strings. (Figure showing 2 way indexing)

SMILILARITIES WITH STRING.

2. Length: Function len() returns the number of items in the
list and it is same as that of string

>>> List=['C','o','m','p','u','t','e','r']
>>> print(len(List))
8

>>> str="Computer"
>>> print(len(str))
output:
8

SMILILARITIES WITH STRING

Smililarities with string.
3. Indexing:
List[i] will return the value at index i of the List. The first item
has index 0.
Example
>>> print(List[1])
o #output it is 2nd element of list whose index is 1
>>> print(str[1])
o #outputit is 2nd element of string whose index is 1
>>> print(List[-1])
r #output it is last element of list whose index is 1
>>> print(str[-1])
r #outputit is last element of string whose index is 1

SMILILARITIES WITH STRING

Smililarities with string.
4. Slicing:
List[i:j] will return a new list, containing objects at indexes between i and j
(including i but excluding j index)
Example
>>> print(List[0:5])
compu #output it is 2nd element of list whose index is 1
>>> print(str[0:5])
compu #outputit is 2nd element of string whose index is 1
>>> print(List[-1:])
r #output it is last element of list whose index is 1
>>> print(str[-1])
r #outputit is last element of string whose index is 1

SMILILARITIES WITH STRING.

Smililarities with string.
5. Concatenation and Replication Operators + and *:-
The + operator adds one list to the end of second list.
>>>List1=[10,20,30]
>>>List2=[40,50,60]
>>>List3=List1+List2
>>>print(List1)
[10, 20, 30]
>>>Print(List2)
[40, 50, 60]
>>>Print(List3)
[10, 20, 30, 40, 50, 60]

Replication of List using * operator

>>> vowels=['a','e','i','o','u']

>>> vowels*2

['a', 'e', 'i', 'o', 'u', 'a', 'e', 'i', 'o', 'u']

SMILILARITIES WITH STRING

Smililarities with string.
5. Membership Operators (in and not in):
>>>Str=”Computer”
>>> List1=['C','o','m','p','u','t','e','r']
>>> 'r' in str
Output
True
>>> 's' in str
Output
False
>>> 'r' in List
Output
True
>>> 's' in List
Output
False

>>> 'r' not in str
Output
False
>>> 's‘ not in str
Output
true
>>> 'r' not in List
Output
False
>>> 's' not in List
Output
True

DIFFERENCE FROM STRING

Difference in list and String
Lists are mutable but string is immutable.
>>> vowels=['a','e','i','o','u']
>>> str="aeiou“
>>> vowels[4]='y‘ #changing list element in place
>>> vowels
['a', 'e', 'i', 'o', 'y'] #look changed list value.

>>> str[4]='h' #trying to change element of string but not allowed
Traceback (most recent call last):

File "<pyshell#88>", line 1, in <module>
str[4]='h'

TypeError: 'str' object does not support item assignment

ACCESSING LISTS

Traversing a List
>>> vowels=['a','e','i','o','u']
Accessing List elements one by one using for loop
>>> for i in vowels:

print(i)
output
a
e
i
o
u

ACCESSING LISTS

How loop works on List

>>> L=['Q','W','E','R','T','Y']
>>> length=Len(L)
>>> for a in range(length):

print("at index ",a," and ",(a-length)," element is ",L[a])

at index 0 and -6 element is Q
at index 1 and -5 element is W
at index 2 and -4 element is E
at index 3 and -3 element is R
at index 4 and -2 element is T
at index 5 and -1 element is Y

ACCESSING LISTS

Comparing List
Two elements of a list can be compared using relational operators
>>> L1, L2=[10,20,30],[10,20,30]
>>> L1==L2
True
Comparison Result of two lists with explanation

Comparison Result Explanation

[1, 2, 8, 9]< [9, 1] True 1 is less than 9

[1, 2, 8, 9] < [1, 2, 9, 8] True 8 at 3rd place in list1 and 9 in list2

[1, 2, 8, 9] < [1, 2, 7, 8] False 8 at 3rd place in list1 and 7 in list2

LIST OPERATIONS

1. Joining Lists: Two or more lists can be concatenated using +
operator in between the list operands.
>>>List1=[1, 2, 3]
>>>List2=[4, 5, 6]
>>>list3=[7, 8, 9]
>>>List1+List2
[1, 2, 3, 4, 5, 6]
>>>List1+List2+List3
[1, 2, 3, 4, 5, 6 , 7, 8, 9]
Both the operands must be of list type. Following list operations not allwed
List+Number
List+Complex Number
List+String

LIST OPERATIONS

2. Repeating or Replicating Lists: A list can be replicated or repeated
an integer number of times.

>>> list=[10,20]
>>> list*2
[10, 20, 10, 20]

>>> list*2.5
Traceback (most recent call last):

File "<pyshell#118>", line 1, in <module>
list*2.5

TypeError: can't multiply sequence by non-int of type 'float'

LIST OPERATIONS

3. Slicing the Lists: List slices are like string slices and are the subpart
of a list extracted out. We can use indexes of list elements to
create list slices as per following format
seq=L[start:stop]

>>> Lst=[10, 12, 14, 20, 22, 24, 30, 32, 34]
>>> seq=Lst[3:-3] #slicing index 3 not included
>>> seq
[20, 22, 24]
>>> seq[1]=28
>>> seq
[20, 28, 24]
>>> Lst[3:30] #since there are not 30 indexes hence wil extract elemenst starting from index 3 to the end of the list

[20, 22, 24, 30, 32, 34]

LIST OPERATIONS

3. Slicing the Lists:
>>> Lst[-17:7] #Starting index is very low but Python will start form -15 and will extract element onward < 7

[10, 12, 14, 20, 22, 24, 30]
>>>Lst[10:20]
[] #since no element falls in between given indexes
Note: L[Start:Stop] creates a list slice with elements falling between Start
and Stop indexes (Stop index not included) skipping step 1 elements in
between
>>>Lst[Start:Stop:Skip]
Example
>>>Lst[0:10:2]
[10, 14 , 22, 30, 34] #Look 2 alternate elements are extracted as skip is 2
>>>Lst[::3] #Start and Stop not given ony skip is given hence it will pick every 3rd element from the list

[10, 20, 30]

LIST OPERATIONS

3. Slicing the Lists:
Seq1=Lst[::2] # Seq1 will have every second item of the list
Seq2=Lst[5::2] #Seq2 will have every second element starting from

index 5 i.e. sixth element
>>>Lst[::-1] # Will reverse the list

WORKING WITH LISTS

1. Appending Element to a List:
append() function is used to append item to the list. Its general
syntax is

List.append(item)

>>>List1=[10,20]
>>>List1.append(30)
>>>List1
[10, 20, 30]

WORKING WITH LISTS

2. Updating Element to a List:
To update or change an element of List in place we just have to
assign new value to the element’s index in the list as per syntax given
below
List[index]=<new value>

>>>List1=[10, 20, 30, 40, 45]
>>>List1
[10, 20, 30, 40, 45]
>>>List1[4]=50
>>>List1
[10, 20, 30, 40, 50]

WORKING WITH LISTS

3. Deleting Element from a List:
To remove item from list del statement can be used. It can
(a) Remove single element
(b) Remove multiple items identified by list slicingSyntax
Syntax
(a) del List[Index]
Example:
>>>List1=[1, 2, 3, 4, 5, 6, 7 , 8, 9, 10]
>>>List1
[1, 2, 3, 4, 5, 6, 7 , 8, 9, 10]
>>>del List1[5]
>>>List1
[1, 2, 3, 4, 5, 7 , 8, 9, 10] #6th element is deleted from list

WORKING WITH LISTS

3. Deleting Element from a List:
To remove item from list del statement can be used. It can
(b) Remove multiple items identified by list slicingSyntax
Syntax
(a) del List[start:stop]
Example:
>>>List1=[1, 2, 3, 4, 5, 6, 7 , 8, 9, 10]
>>>List1
[1, 2, 3, 4, 5, 6, 7 , 8, 9, 10]
>>>del List1[3:5]
>>>List1
[1, 2, 3, 6, 7 , 8, 9, 10] #6th element is deleted from list

WORKING WITH LISTS

3. Deleting Entire List:
Use del <listname> command to delete entire list.
>>>list1=[1,2,3,4,5]
>>>list1
[1,2,3,4,5]
>>>del list1 #all elements of list as well as list object deleted
>>>list1
Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>
list1

NameError: name 'list1' is not defined

WORKING WITH LISTS
3. Deleting an element of List using pop() method:
pop() method can also be used to remove / delete one element from specified index
position of the list like del command but it also returns the deleted value that can be stored
in some variable and can be used later on.
Syntax List.pop(index)
if Index is skipped last element is deleted from list.
>>> List1=[1,2,3,4,5,6,7,8,9,10]
>>> List1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> List1.pop()
10
>>> List1
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> List1.pop(0)
1
>>> List1
[2, 3, 4, 5, 6, 7, 8, 9]

LIST FUNCTIONS AND METHODS
Python offers many built-in-functions and methods for list manipulation. Some of them are listed below

Function Syntax Example

index()
It returns the
index position of
the element in
the list if found
oyherwise error

List.index(item
in list)

>>>
List1=[10,20,30,40,50,60,70,80,90,100]
>>>List1
[10,20,30,40,50,60,70,80,90,100]
>>> List1.index(40)
3
>>> List1.index(120)
Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>
List1.index(120)

ValueError: 120 is not in list

LIST FUNCTIONS AND METHODS

Function Syntax Example

append()
It appends the
given item to the
end of the list the
new list
note: append()
does not return the
new list

List.append() >>> List1=[10,20,30,40,50,60,70,80,90,100]
>>>List1
>>>List1.append(110)
>>>List1
[10,20,30,40,50,60,70,80,90,100,110]
Note:
>>>List3=List1.append(120)
>>>List3
[] //Blank because append do not return anything
>>> Lis1.append(120,130) #error
Traceback (most recent call last):
File "<pyshell#22>", line 1, in <module>
Lis1.append(120,130)

NameError: name 'Lis1' is not defined

LIST FUNCTIONS AND METHODS
Function Syntax Example

extend()
extend() method is
used to append a list
to the existing list but
it also does not return
any value.

List1.extend(List) >>>List1=[10,20,30]
>>>List2=[40,50,60]
>>>List1
[10,20,30]
>>>List2
[40,50,60]
>>>List1.extend(List2)
>>>List1
[10,20,30,40,50,60]
>>List2
[40,50,60]
>>>List3=List1.extend(List2)
>>>List3
[] # empty

LIST FUNCTIONS AND METHODS
Function Syntax Example

extend()
extend() method is
used to append a list
to the existing list but
it also does not return
any value.

List1.extend(List) >>>List1=[10,20,30]
>>>List2=[40,50,60]
>>>List1
[10,20,30]
>>>List2
[40,50,60]
>>>List1.extend(List2)
>>>List1
[10,20,30,40,50,60]
>>List2
[40,50,60]
>>>List3=List1.extend(List2)
>>>List3
[] # empty
>>>List1.extend(130) #Error it can not add one
element rather it requires list. Either Provide a list or
list object
>>>List1.extend([120,130]) #OK it will work

LIST FUNCTIONS AND METHODS
Function Syntax Example

insert()
insert()
method is
used to
insert in
between or
any position
of your
choice.

List1.insert(index, item) >>>List1=[10,20,30]
>>>List1.insert(2,25)
>>>List1
[10,20,25,30]
>>>List1.insert(0,5)
>>>List1
[5,10,20,25,30]
>>> List1.insert(len(List1),40)
>>> List1
[5, 10, 20, 25, 30, 40]

LIST FUNCTIONS AND METHODS
Function Syntax Example

pop()
pop() method
removes data
from the
specified
index position
of the list. It
also returns
the data
popped.

List.pop(index)
List.pop()
#if without index
used pop() function
will remove last
element from the
list

>>> List1=[10,20,30,40,50]
>>> List1
[10,20,30,40,50]
>>>List1.pop(0)
10
>>>List1
[20,30,40,50]
>>>List.pop()
50
It can not pop data from empty list
>>>List2=[]
>>>List2.pop() #Error

LIST FUNCTIONS AND METHODS
Function Syntax Example

remove()
remove()
method
removes the
first
occurrence of
the instance
from the
specified list.
It does not
return
anything.

List.remove(<value>) >>> List1=[10,20,30,40,50, 30, 90]
>>> List1
[10,20,30,40,50, 30, 90]
>>>List1.remove(30)
>>>List1
[10,20,40,50,30,90]
>>>List.remove(150)
Traceback (most recent call last):
File "<pyshell#11>", line 1, in <module>
List1.remove(150)

ValueError: list.remove(x): x not in list

LIST FUNCTIONS AND METHODS
Function Syntax Example

clear()
clear()
method
removes all
the items
from the list.
Unlike del
clear removes
only the items
of the list and
not the list
itself.

List.clear() >>>List1=[10,20,30]
>>>List1
[10,20,30]
>>>List1.clear()
>>>List1
[] #empty list

LIST FUNCTIONS AND METHODS
Function Syntax Example

count()
count()
method return
the number of
occurrence of
the items in
the list which
has been
provided as
argument to

the function

List.count(item) >>>List1=[10,20,30,10]
>>>List1
[10,20,30,10]
>>>List1.count(10)
2
>>>List1.count(100)
0

LIST FUNCTIONS AND METHODS
Function Syntax Example

reverse()
reverse() method
reverse the list in
place.

List.reverse() >>>List1=[10,20,30]
>>>List1
[10,20,30,10]
>>>List1.reverse()
>>>List1
[30,20,10]

sort()
sort() method
sorts the list in
ascending order
by default. it can
also be used for
sorting in
descending order.

List.sort()
Sort in ascending order
List.sort(reverse=True)

>>>List1=[15,5,25,20,40,60,50]
>>>List1
[15,5,25,20,40,60,50]
>>>List1.sort()
>>>List1
[5,15,20,25,40,50,60] #sorted in ascending order
>>>List1.sort(reverse=True)
>>>List1
[60,50,40,25,20,15,5]

LIST PROGRAMS
""“ Program to minimum and maximum element in a list """
lst=eval(input("Enter List:- "))
length=len(lst)
min=lst[0]
minindex=0
max=lst[0]
maxindex=0
for i in range(1, length-1):

if lst[i]<min:
min=lst[i];
minindex=i;

if lst[i]>max:
max=lst[i]
maxindex=i;

print("Given list is ",lst)
print("smallest value in list = ",min," and its index is ",minindex)
print("Largest value in list - ",max," ans its index is ",maxindex)
Output
Enter List:- [2,3,4,-2,6,-7,8,11,-9,11]
Given list is [2, 3, 4, -2, 6, -7, 8, 11, -9, 11]
smallest value in list = -9 and its index is 8
Largest value in list - 11 ans its index is 7

LIST PROGRAMS
"""
Program to find mean of the list
"""
lst=eval(input("Enter List:- "))
length=len(lst)
mean=sum=0
for i in range(0, length-1):

sum+=lst[i]
mean=sum/length
print("Given list is ",lst)
print("Mean value is ",mean)
===
Enter List:- [10,20,30,40,50]
Given list is [10, 20, 30, 40, 50]
Mean value is 20.0

Thanks for Watching
This Presentation

